On December 11th I attended an analyst webcast from Cisco entitled “The Future of the Internet”. At this Cisco unveiled its plans for its next generation of networking products. While this was interesting, it did not meet my expectations for a deeper vision of the future of the internet.
The timing is interesting because 50 years ago in 1969 there were several events that were seminal to the internet. Many people will remember Apollo 11 and the moon landing – while this was an enormous achievement in its own right – it was the space race that led to the miniaturization and commercialization of the silicon-based technology upon which the internet is based.
The birth of the Internet
1969 also marked the birth of Unix. Two Bell Labs computer scientists Ken Thompson and Dennis Ritchie had been working on an experimental time-sharing operating system called Multics as part of the joint research group with General Electric and MIT. They decided to take the best ideas from Multics and implement them on a smaller scale – on a PDP-7 minicomputer at Bell Labs. That marked the birth of Unix, the ancestor of Linux, the most widely deployed computing platform in the cloud, as well MacOS, IoS and Android.
October 29th, 1969 was another important date: it marked the first computer to computer communication using a packet-switched network ARPANET. In 1958, US President Dwight D. Eisenhower formed the Advanced Research Projects Agency (ARPA), bringing together some of the best scientific minds in the US with the aim to help American military technology stay ahead of its enemies. Among ARPA’s projects was a remit to test the feasibility of a large-scale computer network.
In July 1961 Leonard Kleinrock at MIT published the first paper on packet switching theory and the first book on the subject in 1964. Lawrence Roberts, the first person to connect two computers, was responsible for developing computer networks at ARPA, working with scientist Leonard Kleinrock. When the first packet-switching network was developed in 1969, Kleinrock successfully used it to send messages to another site, and the ARPA Network, or ARPANET, was born—the forerunner of the internet.
These were the foundational ideas and technologies that led to the largest man-made artifact – the internet.
Cisco announces new products based on single multi-purpose ASIC
The internet today depends upon the technology provided by a range of vendors including Cisco. During the webcast, Chuck Robbins, CEO of Cisco, made the comment that he believed that 90% of the traffic on the internet flows through silicon created by Eyal Dagan, SVP silicon engineering at Cisco. Obviously, this technology is an important part of the internet infrastructure. So, what did Cisco announce that is new?
The first and most significant announcement was that Cisco has created the first single multi-purpose ASIC (computer chip) that can handle both routing and switching efficiently, with high performance and with lower power consumption. According to Cisco, this is a first, and in the past, it was generally thought that the requirements of routing and switching were so different that it was not possible for a single chip to meet all the requirements for both these tasks. Why does this matter?
The current generation of network appliances is built with different chips for different jobs and so this means that multiple software stacks are needed to manage the different hardware combinations. A single chip means a single software stack which is smaller, more efficient and easier to maintain. Their new network operating system IOS XR7 implements this and is claimed to be simpler, supports modern APIs and is more trustworthy. Trustworthiness is ensured through a single hardware root of trust.
One of the problems that network operators have when deploying new hardware is testing to ensure that the service is maintained after the change. Cisco also announced a new cloud service that helps them with this problem. The end user uploads their current configuration to the service which generates tests for the new platform and greatly speeds up testing as well as providing more assurance that the service can be cut over without problems.
Cisco delivers infrastructure but is that enough?
It is easy to forget, when you click on your phone, just how many technical problems had to be overcome to provide the seamless connectivity that we all now take for granted. The vision, creativity, and investment by Cisco over the five years that it took for this development is to be applauded. It is excellent news to hear that the next generation of infrastructure components that underly the internet will provide more bandwidth, better connectivity and use less energy. However, this infrastructure does not define the future of the internet.
The internet has created enormous opportunities but has also brought significant challenges. It has provided opportunities for new kinds of business but also enabled the scourge of cybercrime by providing an unpoliced hiding place for cybercriminals. It has opened widows across the world to allow people from all cultures to connect with each other but has also provided a platform for cyberbullying, fake news and political interference. It is enabling new technologies such as artificial intelligence which have the potential to do great good but also raise many ethical concerns.
Mankind has created the internet, with the help of technology from companies like Cisco. The internet is available to mankind, but can mankind master its creation?