What is it that connects Covent Garden in London, The Roman Baths in Bath and Los Angeles? The answer is 5G mobile communications used by media organizations. On January 29th I attended the 5G Unleashed event at the IET in London. (The IET is the body that provides professional accreditation for Engineers in the UK). At this event there were several presentations describing real world use cases of 5G as well as deep dives into the supporting infrastructure. While 5G is being sold to consumers as superfast mobile broadband there is a lot more to it than that. It has the potential to impact on a wide range of organizations as well as public infrastructure. 5G provides the communications needed to enable clouds of things but it also creates risks which need to be managed.
Key Features of 5G
The key features that 5G offers include the ability to handle up to 1000 times greater data volumes and up to 100 times more connected devices than with 4G today. It can also reduce communications latency and enable up to ten-year battery life for low power devices.
Example Applications of 5G
There are many areas where 5G is set to transform the way things are done. Mobile robots within factories and better control over supply chain processes will benefit manufacturing. Connected and Automated Vehicles will require low latency, high volume communication creating terabytes of data every day. Remote healthcare applications using 5G can enable the delivery of healthcare services at a lower cost. Guaranteed low latency and high bandwidth capabilities provided by 5G have the potential to dramatically reduce the cost and equipment needed for real time news broadcasting. 5G could replace the need for the bulky satellite equipment that is currently used for this.
For example: on May 31st, 2019 the BBC made it first outside news broadcast using 5G from Covent Garden in London. This didn’t go as well as expected! Their SIM ran out of data and the location was so full of tourists sharing photos and videos that the mobile service they were using could not provide the bandwidth needed. These teething problems will be overcome now that 5G has been fully launched.
During 2018 and 2019 in the 5G Smart Tourism project BBC Research & Development trialled an app at the Roman Baths in Bath, to visualise the Baths at times before and after the Roman period. The app tells the story of three periods: the mythical discovery of the hot springs by King Bladud, the Baths falling into disrepair when the Romans left, and their renovation in Victorian times. This used the so-called ‘magic window’ paradigm where, as the user moves their device around, they see a view appropriate to where they are looking. Once again, this immersive experience depended upon the high bandwidth and low latency provided by a 5G mobile network.
In Britain, Worcester Bosch has become the first-ever factory in Britain to have 5G wireless access. This has been used in a trial to run sensors in the Worcester Bosch factory for preventative maintenance and real-time feedback whilst also using data analytics to predict any potential failures.
5G and Edge Computing
To obtain maximum benefit from the low communications latency that 5G can offer the end to end system architecture needs to change. The computing power needs to move to be physically closer to the edge to avoid delays across the backhaul – the network between the cellular radio base station and the data centre. In practical terms this means locating the data centre next to the mobile radio station.
This is exactly what AWS has done in partnership with Verizon in Los Angeles. This was announced in December 2019 as the first AWS Local Zone. AWS say that Los Angeles was chosen to support the local industries that would benefit from the high bandwidth and low latency including media & entertainment content creation, real-time gaming, reservoir simulations, electronic design automation, and machine learning. AWS also has similar partnerships with mobile service providers in other parts of the world.
5G and Security
Given that the data payload carried by 5G will include massive amounts of potentially sensitive data security is essential. The potential to compromise the traffic control across a whole city or to disconnect energy supplied through millions of smart meters means that 5G must be treated as a component of critical national infrastructures.
The 5G standards provide security mechanisms that include enhancements in the areas of encryption, authentication and user privacy. However, they do not protect against all possible threats, for example DDoS and radio jamming. Protecting against these will depend on the actual deployment.
However, many of the IoT devices contain numerous known technical vulnerabilities and some even feature a fixed and unchangeable root password. It is essential that the IoT devices are designed, built and deployed with security in mind. One of the opportunities provided by 5G is that by using an embedded SIM the device identity can be more rigorously authenticated and the integrity and confidentiality of communication better ensured.
So, you need to consider what opportunities that 5G could bring to your industry sector. This technology will provide greater mobile connectivity and capacity – how will this affect your organization? Industry sectors that are likely to see benefits are those that require the new capabilities that this technology will provide. These include logistics, manufacturing, transport, healthcare, the media and local government.
Make sure that you build in end-to-end Security from the start – there is often a tendency when exploring new areas to focus on functionality and consider security as an afterthought. The consequences of security failure in many of the potential use cases go way beyond data leakage to include physical harm and large-scale disruption.
For more details on this subject see KuppingerCole Leadership Brief 5G Impact on Organizations and Security 80238. Also attend the Public & On-Premise Cloud, Core IT Hosting, Edge IoT Track at EIC in Munich on May 13th, 2020.